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Abstract

A class of asynchronous Iterativ, methods Is pr.s.nt.t ~r soLving a system of
equations. Existing Ltsratlv msthods vs idsnWL.d In terms of asynchronous iterations,
and new schemes are Introduced corresponding to a paraILsi lmplem.ntatton On a
mutt lproc .sso r system with no synchronization between cooperating proc.ss.s. A
suffic ient condition Is given to guarantee the converg.nc. of any asynchronous
Lt.rat&ons, and results are extended to Include lt ratlv. methods with memory.

Asynchronous iterat ive methods are then .valuated from a computational point of
view, and bounds are d.r(ved for th. efficiency. The bounds vs compsr.d with actual
measurements obta ined by running variou, asynchronous Iterations on a ms*tlprscusor,
and the experimental results show clearly the advantag. of purely asynchronous iterative
methods.
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1 — Introduction

In this paper we investigate the fixed point problem for an operator F from W’
into itself: we want to find a vector x in R” which satisfies the system of equations

represented by
x — Fix) . (1.1)

In (1), Chazan and Miranker introduced the clsaotSc re~axat~oa~ schenze, a class of

iterative methods for solving equation (1.1) where F is a linear operator gwen by

F(x) Ax + 6. They showed that iterations defined by a chaotic relaxation scheme

converge to the solution of equation (ii) if and only if p()AI) < I. (If M is a real

~Ixa matrix, p(M) denotes its spectral radius and IMI denotes the non-negative ilxr& matrix

obtained by replacing the elements of M by their absolute values.)

• In (4), MieUou generalized the chaotic relaxation scheme to include non—linear

operators and obtained convergence results similar to those of (13 in the case of

contract4ng operators (see, for example, (5, p. 433]).

In both [1) and [4), the motivation of defining chaotic relaxation is to account for

the parallel implementation of iterative methods on a multiprocessor system so as to

reduce communication and synchronization between the cooperating processes. This

reduction is obtained by not forcing the processes to follow a predetermined sequence of

computations, but simply by allowing a process, when starting the evaluation of a new

iterate, to choose dynamically not only the components to be evaluated but also the

values of the previous iterates used in the evaluation.

j , The definition of the chaotic relaxation scheme does not, however, allow for a

- completely arbitrary choice of the antecedent values used In the evaluation of an Iterate.

The main restriction is that there must exist a fixed positive integer a such that, In

carrying out the evaluation of the ~-th iterate, a process cannot make use of any value of

the components of the f-tb iterate if j  < S-s. For example, if , for some reason (due to the

computation Itself or to the mutiprocessor system), a process may take an arbitrarily tong

time to relax the components it is evaluating, the other processes may have to watt untiL - -
~~

the evaluation by the first process is completed. This requires repealed checking before •
~ 0

• each step of the iteration and some form of synchronization. This Is exactly what we

want to avoid because the use of synchronization primitives Is time consuming and also

1 ~~~

— ——.‘—-.—~ — 
— 

_ ..~~~~__si —



•~ •~ -.•• . 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _— ~~~~~~r Vfl — 

~~ .—~~~~~~r—- r-
• • .—.w ~~~~~~~~~~~~~~~~~ •

because synchronization forces some of the processors to be Idle or Implies the
switching of context. This creates an unnecessary overhead, reduces the paralLelism, and
decreases the maximum speed-up we expect to achieve In using a multIprocessor.

In the next section we introduc, the class of as~ischronous SteratSw method. which

does not Impose the restriction mentioned above, and we show that existing iterative
methods (and, in particular , th. chaotic relaxation ) can be represented as special cases of
asynchronous Iterations. Section 3 gives the definition and rev iews some prop erties of
contracting operator:. Then the theorem of sect ion 4 generaLizes the results on the
converge nce of the chaotic relaxation obtained by Chazan and t4ranker [13 and by
Mleliou (4]. ThiS r*sult is further extended, In section 5, to include Iterative methods
with memory. In sect ion 6, we consider the complexity of asynchronous Iterative
methods, and we derive bounds on the efficIency. These bounds are then compared w ith
actual measurements of asynchronous Iterations. The experimenta l results, presented In
section 7, show a cons iderab le advantage for iterations making no use of synchronization,
and this constitutes the best argument for using asynchronous Iterative methods.
Possible extensions of th. results are discussed In sectIon 9, and concluding remarks are
presented In the Last section.

2 — Th. class of asynchronous Iterativ , method . -

The following notations wilt be used throughout the paper. If x Is a vector of It”,
its comp onents wi lt be denoted by x~, S — 1, -. , n. To avoid confusion, a s quence of
vectors of R” w(U be dsnoted by -s(j),Ji.r O,l,.... If F’ ls an operator of R” intO ttssif,
F (s) wilt also be represented In components by f~(x) or by fj(xj , -. — 1, ~~~~~~~~~ ‘N
denote by P4 the set of alt non-negative Integers.

2.1 • Definition of asynchronous Iterative methods

D.flnttlon ls

Let P be an operator from It” to It” An ss~.icAranou. StarstSon corresponding
to the operator F and start ing with a given vector sø)ts a sequence a(j), I • 0, 1,...,
of vectors of IV’ defined recursively by:

( If SEJ, (2.1)

~ F6~a(•s(J)) .
~ 
, a,,(s,/ J)))  if ~ £

~ 
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where 
~~~
a (J~ I j  — 1,2,... } Is a sequence of non-empty subsets of LI. — ,  11) and

.6 — I (s~(J). -. , .,,fJ)) ~J — 1,2,... } Is a sequence of elements In ~‘~“

I 
In addition, ~ and 4 are subject to the folLowing conditions:

for eachia l. . .,s
(a) s~(j)~~j—1,j.. 1,2,...,
(b) .5(j), considered as a function of j ,  tends to Infinity as j  tends to infinity,
(c) S occurs infinitely many often in the sets J1, j — 1, 2,

An asynchronous iteration corresponding to F, starting with x(O) and defined by

? and 6 wilL be denoted by (Fx(O),J,6). I
• 

. 
An asynchronous iteration (F,x(O)J,4) may be thought of as correspondIng to the

fo llowing sequence of computations on an asynchronous multiprocessor.

Assume we have a pool of processors available. Let t i, j  — 1, 2, ... , be an
Increasing sequence of time instants. At time t1 processor P is Idle and is assigned to
the evaluation of the iterate x(j), x(j) differs from x(j-1) by th. set of components

f S C .I~ } and P starts computing these components using values of components
known from previous iterates, namely the r-th component of the s,.tJ)-th iterate, for

, I, ... , it. The choice of the components may be guided by any criterion, end, In
particular, a natural criterion is to pick up the most recentLy available values of the

I components. This scheme does need any synchronization between the processes. At
some time tk’ later on (Is > f) P wilL finish its computations and will be assigned to a new
evaluation: x(k).

‘1
The use of asynchronous iterat ive methods ls~ obv iousLy not restr icted to

multiprocessor systems , and the scheme is also welL suited for execut ion on a network of

• compu ters , in particular , when the communication betwee n elements of the network is not
too expensive as opposed to the computation Itself.

We notice that , in the evaluation of an iterate , nothing is imposed on the use of the
• values of the prev ious iterates . The only thing required, by conditio n (b) of the

definition, is that, eventual ly, the values of an early Iterate cannot be used any more in
further evaluations and more and more recent values of the components have to be used
instead . On a multiprocessor , this condition can be satisfted as long as no processor

• crashes (and eventua lly completes its computation ).

- 3 -
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• Condition (a) of the definition states the fact that only components of previous

• iterates can be used In the evaluation of a new iterate. CondItion (c) guarantees that no

component be abandoned forever.

2.2 — Examples and particular cues of asynchronous iterations

Classical iterative methods: point or block Jacobi, Gauss-Seidel, etc., as welt as

others introduced more recently : chaotSc r.k.xatSon athens. (I], p.riodic cheotic scheme

(2], Stórat&on chootSqu. I rotarda (4] 4t~rot~on chsotlqus ski.-par~SL1Ie (63, can alL be seen

as particular cases of asynchronous iterations.

ror example , the point-Jacob i method def ined on the operator F with the init ial

approximation x(O) can be represented by the asynchronous iteration (F,z(O),~,4) where

J and 4 are defined by: -

J1. .( 1, ... , r & )  for j — 1,2,~ .,

s5Q) — j -I for 1*1, 2, ... and s.l , ..., i t .

3 The same point-Jacobi method can equivalently be represented by the

asynchronous iteration where ~ and id are defined by:

J 1 a { 1 . (j — l nzod s) ) for j — 1, 2, ... ,

aj (J) — it 
~ 
(j—1)/ii j for j  — 1, 2, ... and S — 1,, .. , it •

Although those two representations correspond to the same point-Jacob i method,

they differ by the implicit information they contain about the decomposition of the

computations. In the first case , alt component3 ire evaLuated at once and this,

presumably , wi lt be done by one computational process. In the second case, however,

each com ponent is evaluated separate ly, and up to it processes can be used to perform

the evaluat ions . Between the two extreme representations of the point-Jacobi method, In

terms of asynchronous iterations, several others can be proposed , each of which can be

j interpreted In t rms of decomposition Into computational processes and In terms of

implementat ion by concurrent processes .

• The Iterative method proposed by Robert, Charnay and Missy (it~rat4oss aheosique

s~rS.-poroSJ El. (6]) can be obtained as a special case of an asynchronous Iteration In

which s~(J) f-I (for all S — 1, ... , is and j  • 1, 2, ...) . This corres ponds to a str ict ly

sequent ial computation of sets of components. The choice of the components w ithi n a set

- 4 -
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is arbitrary and the calculations of their vaLues can be done simu ltaneous ly but the

evaluation of a new set of components cannot be started before alt comp onents of the
previous set have been computed and the ir new values relaxed. The goal , of th lr
research was to show that, for exampLe, In the Iterative solution of lInear systems
resulting from the application of the method of finite differences to partial dif ferent ial
equations, It Is possible to concentrate the computations more on those points of the grid
where the convergence is slower than on other nodes. This is not the case with ordinary
iterative methods for which any comp onent is iterated as many t imes as any other
component

Chazan and M(ranker (1] have prop osed a chaotic relaxation schense to solve a
Linear system. Our definition of an asynchronous iterative method is very similar to the

• definition they give for a chaotic iteratIve scheme. Our definition, however, does not
have the restriction they impose , namely (with our notations ) that J-.~(J) has to be
unIform ly bounded by some fixed integer , say a, (for aLL S — I, _. , is and I — 1, 2, ... ). This

means that, In the evaluation of the j -th iterate , only valu es of the components of the a
preceding iterates can be used. From a practical point of view, In an actual
imp lementat ion of such scheme on an asynchronous mult iprocessor , th is requ ires a strong
assumption about the relative speeds of the different processors , about the scheduling
policy of the sup ervisory system , and about the implementation of the computations in
general. There Is no way to guarantee this assumption without some form of
synchronization (which Is precisely what we want to avoid).

• 
- 

Although alt chaot ic relaxation methods (as presented in (1] or (4]) can be
I Identified as asynchronous iterat ions , the converse Is not true as Is ILlustrated by the
fol low ing example. Let F be an operator from t12 Into itseLf. Assume we have two
processes P1 and P2 attached to the evaluations of the first and second components,
respect ively . To avoid synchronization, the processes always use In an evaluation the
values of the components currently available at the b.g&ru(ng of the computat ion. If we
assume that it always takes I unit of time for P1 to perform the evaluation of x~ and It
takes Is units of time for P2 to perform the k-th evaluation of 

~~ 
then the quantit y

J - ‘2~
J
~ 

grow s as ~17 which is unbounded. This Iteration is a legitimate asynchronous
Iteration , It is not, however, alLowed In the setting of (1) and (4]. 
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3 - Contracting operators

in the next section we shall give a sufft.ciant cond ition on the operator F for the

converge nce of any asynchronous Iteration. Needed defInitions are given in this section.

3.1 — Lipchitzlan and contracting operators J

Contracting operators to be defined below correspond to P-co.stractSofl.s in 
•

f (5, p. 433), and the notion was used to obtained the results of (4] and (6].

Definition 2: -

An operator F from R” to R~ is a Lipch it:Sws opirator on a subset 0 of R’5 If

there exists a non-negative rsxn matrix A such that:

IF(x)-F(øI �AIx-yI , V x, ~‘ C D , (3.1)

where, if z is a vector of R” with components z
~, 

& — 1,... , is, ~zi denotes the vector

with components Iz~i, i. — 1, .. . , is, and the inequaLity holds for every component

The matrix A wilL be called a Lipchitz&an nto.trix for the operator F. I

From this definition we can see that any Lipchitzian operator is continuous and, In

fact, uniformly continuous on 0. However this definition is too broad and, in part icula r,

we are not guaranteed of the existence and the uniqueness of a fixed point as is shown

by the following example. Take the operator F from R to I? defined by P(x) — /x241?,

this operator is Upchitzian on I? because
IF(x)-F(,)i — I(x-, ((x.,)/(/~~’a2 /,2,Jjj~ $x-yI , V x, y C IL

Howeve r, the equation x — I~~i (corresponding to a — 1) has no solution. On the other

hand, the equation a — j x~, (corresp onding to a — 0) has an infinity of solutions, and, In

fact, a continuum of solutions.

We wilt, therefore, restrict ourselves to the following class of operators.

Definition 3:

An operator F from 11” to I?’ is a contracting operator on a subset D of R’~ If It • - 
-

is a Lipchitztan operator on 0 with a Llpchitzian matrix A such that p4’A) c I (where

p(A) is the spectral radius of A).

The matrix A wilt be called a contracting matrix for the operator F~ I

--

~

- ‘ - -

~ 
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The fact that, unlike Lipchitztan operators, contracting operators are guaranteed to

• have a unique fixed point In th. subset 0 can be easily derived from the definit ion. In
addition, If we assume , for examp le, that 0 is closed and that F(D) C 0, we are also
guaranteed of the existence of a fixed point in the subset 0. A proof can be found In
(5, pp. 433-434]. —

3.2 - Examples of contract ing operators

We could have considered a more general definition for asynchronous iterative
methods by Lntroducing a relaxation fac tor ~~> 0. This would simply consist of replacing,
in equations (2.1), the operator F by the operator F0 — oF + (1-oL, where E Is the
identity operator of I?”. It follows that

IF~(x)-F0(,)I � oiFTx)-F(y)i • (1-oflx-y(,
and, if F is a contracting operator with a contracting matrix A, F~, Is a Llpchitzian
operator with the Lipch itzlan matrix ,4~ — + (1-011. The matrix A being non-negative
we have ,o(A0) - op(A) • (1-o(, and, if we choose -

0 < o < 2/ (I+p (A) J , (3.2)

Pc) is also a contracting operator. In particular, as tong as condition (3.2) is satisfied, the

• 
results of the next section aLso apply to asynchronous iterative methods with reLaxation.

Let F be a Linear operator given by F(x) — Ax + 6, where A is an flxft matrix arid b
is a vector of R”. We observe that F is a contracting operator if and onLy if p((A J) < 1.

Therefore, in the case of Linear operators, the notion of contracting operators coincides
with the property stated by Chazan and Miranker for their convergence resuLt (1], and
their result will appear as a particular case of the theorem of the next section.

4 
If we now consider a Linear system of equations derived from a linear eLLiptic

different ial equation by the method of finite differences, we note that the system is

~ represented by Ax — b, where 6 is a vector of ti” obtained from the boundar y conditions
and A is an ,sxn. M matrix (see, for example, (7, p. 853). Therefore the system can be
written Into the form of equation (1.1) in which F is the contracting operator gIven by
F(x) — (1 - D 1A)x • D’~Ô, where 0 ii the matrix composed of the diagonaL elements of A.

This example shows , In the case of Linear operators , the importance of contractin g
operators.

I On the other hand, non-Linear contracting operators, too, constitute a very

- 7 -
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I
important class. A first example is directiy derived from the previous one. Elliptic

partial differential equations, obtained by the addition of a small non-linear perturbation
• to a Linear partiaL differential equation, can aLso be shown to give rise to (non-Linear)

contracting operators. -

More important, if G is a non-linear operator from If” into itself with the simple

root ~~, superlinear iterative methods have been devised to find the root (of 0, provIded 
-

that an initiaL approximation x (0) sufficientLy close to (is already known. For example,

Newton iterative method generates the sequence of iterates
x4+1) — F(x(Q) — x4) - (G’(x(S))] 10(x6)), for £ — 0, 1, ... ,

which converges quadratically to the root ( of C. In this particular example, we can

easily der iv e, under usual assum ptions (for example, G’ satisfies some Lipchitz cond ition

in a neighbor of f), that the Newton operator F corresponding to C is a contracting
— operator.

In fac t this result is very general. Let F be an operator from If” into itself with a

fixed point 1’. If we assume that F is continuously differentiable in the set

— { x  I{z-tU < r )  and that the derivative F’ vanishes at ( and satisfies a Lipchitz

condition
IIP(x)—P(x)Il � M~(x— y ~ V x, ‘ ~~ °r ’  -

~

- - then it can be easily shown that 
- — - - -

IIF(x)-F(y)H ~ 2Mrffx-yQ , V x, y C Dr .
Therefore, by choosing the vector norm HxH — ~x1 + ... + Ix~I (which only changes the

• constant M), the operator F is certainty a Lipchitzian operator with the Lipchitzi.n matrix

A (o.,~1] where a13 — 2Mr, for L, j  a 1, ... , ri. In particular, if we know a sufficientLy close

approximation to the fixed point ( (1. e., if r is smalL enough), the operator F is also a

contracting ~perator. This shows that the class of contracting operators contains, under
‘ weak cond itions , all iterative functions occurring in the classicaL superttnear Iterative

methods.

4 - Convergence theorem

- 
_ • -i Before stating a sufficient condition ensuring the convergence of an asynchronous

iteration, we give a characterization of a non-negative matrix with spectral radius Less

than unity. An aLgebraic proof of this characterization can be found In [1, p. 218), a 
- -

- • 
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shorter proof, based on the continuity of the spectral radius of a matrix as a function of
its coefficients, is given below.

Lemma:
Let A be a non-negative square matrix. Then p(A) c I if and only if there

exists a positive scatar o and a positive vector v such that:
Av~~ov arid o< 1.  (4.1)

Proof:

We first assume that (4.1) holds. In this case we note that UAII
V ~ o < 1, where the

matrix norm ft.I~, is induced by the vector norm defined by:
flxJI,, — ,,zax( lx~l/s’~ a 1, ... ,~~~ } .

Therefore the matrix A is convergent which implies p (A) < I (see, for example, (7, p. 13]).

Now assume that p (A) < 1. Let t be a non-negative scalar and A
~ 

be the matrix
obtained by adding t to all nulL coefficients of A. Clearly, for any positive vector x, we

have Ax � A5x. On the other hand, p(A~) is a continuous function of t. In particular, since

• 
A0 — A and p (A) c 1, we can always choose t > 0 smaLl enough so that p(A

~
) < I (in fact,

we also have p(A) � p(A
~
)) . Then Let o — p(A

~
). As At > 0, from Perron’s theorem (see, for

example, (7, p. 30]), there exists a positive eigenvector u corresponding to the eegenvalue
o. The positive scatar 0 and the positive vector v verify Au 

~ 
A
~
v a ov with o < I. And

this completes the proof. I

- 
• 

This proof shows, in particular, that o ~ p(A) . But, we also see easily that the
positive scaler o can be chosen arbitrarily close to p(A).

We are now abLe to state a sufficient condition on the operator F for the
convergence of any asynchronous iteration corresponding to F. This result is similar to
the results obtained for the convergence of a chaotic Iteration by Chazan and Miranker
(1] and by MieLLou (4]. The proof given here follows the- same idea as in
(1, pp. 217-218), it does not depend, however, on the assumption that (with the notation
of definition 1) j-s~(j) is uniformly bounded by a fixed integer, for any f a 0, 1, ... and

-
• 

Theorem 1:

- I 

- 

If F is a contracting operator on a closed subset 0 of If” and If P0)) c D, then
• any asynchronous iteration (T,x(0),J,4) corresponding to F and starting with a vector

x(0) In 0 converges to the unique fixed point of F In 0.

- - - —~~ —S - —— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Proof:

• Let (be the unique fnced point of F. By considering the operator F(x.f)-f, we may

assume, without toss of g.neratlty, that f - F(() — 0. By setting ~ a In equation (3.1),

the Lipchitz condition on the operator F give.
• F(a)~~ AIaI , V w E O .

Le tAbea co M cting matf t* lorFa IdtetQandW bea$d .f ined ln thelemma.

Since a’ is a positive victor , $sr amy s*artw~ ,,dsr ) we can find a positive sca lar ~
such that Ix(O)I ‘~~~~

.

We wiLl show that we can c1 %it.4 a se~*mmce Sf imáce. J~ ~ 
- 0, 1, .. ., such that

the sequence of iterates of F,a )J,4) satii ias:
Iz(j) I ~~eo~v for I ~ ,~~~. 

(4.2)

As 0 <0  < 1, this shows that s(j ) .0 as , ~ and this wilt prove the theorem.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ That ,.s, for

j � O w e have:
)x(j )I � ~v .  (4.3)

From the choice of o~, inequality (4.3) is true for j  — 0. Assume, for induction, that

it is true for 0 
~ 3 < Ic and consider x(k). Let : denote the vector with components

— x4(s4(k)), for ~. — 1, .. . , n. From definition 1, the components of x(k) are given either

by x4(k) — x1(k-I) if £ I JIc’ in which case ~xs(k)I — Ixs(k-I)I ~~~~ or by x1(k) — 4(z) if

& C 
~k In this tatter case, we note that, as s1(k) c Ic (condition (a) of definition 1), we

have:

~ A~zI ~ o~Av ~~OAQV

and In particuLar: -

1x4(k)I — If1(z) ~~wou~ .

As 0 < 0 < I, in this case too we obtain (x1(’k)j � ~u1 and (4.3) is proved by induction,

4 which shows that (4.2) is true for p — 0 if we choose Jo

Now assume that J~ 
has been found and that inequality (4.2) holds for 0� p cq. We

want to find Iq and show that (4.2) aLso holds for p a q.

First define r by
r— n un{k I  V J � k  ‘6J~~ Jq-I ’ for £ a I ,~ .,r i }.

We see, from condition (b) of definition 1, that this number exists, and we note that, from

• condition (a), we have r> 3q 1 which showS, in particular, that )x(r)) ~~~~~~~~~~~~~

- to-
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Then take 3 ~ r and consider the compo:~ents of x(j) . As above, let z be the vector
with components z~ — xj s~(j)) . From the choice of r, we have s4(J) 

~ Jq-1’ for i — 1, ... ,

and this shows that fr) ~ wo’I~~v. In particular, In using the contracting property of the
operator F we obtain:

)Fi z)) � A~z~ � ~

This inequality shows that, if £ C .j p x4(J) satisfies:
lx~

(i)l — lf~
(z)) ~

1On the other hand, if £ I J3 the &-th component is not modified. Therefore, as soon as the
t-th component is updated between the r-th and the j-th iteration we have:

j x ~(j ) l ~ 00
q~4~ (4.4)

Now, define Jq as:

iq n~A n { i l i � r  and {I , ... , n) a J r U ...UJ j )

(this nurnber exists by condition (c) of definition 1), then for any I � Iq every component
is updated at least once between the r-th and the j-th iteration and therefore inequality
(4.4) hoLds for & — 1, ... , a.. This shows that inequality (4.2) holds for p — q and this
proves the theorem. I

5 — The class of asynchronous iterative methods with memory

The idea behind the definition of asynchronous iterations, as presented in section
2, is to allow, in the evaluation of F(x), different (and independent) processes to compute
different subsets of the components. This corresponds to a natural decomposition for the
evaluation of Fix) when the operator F is known explicitely by the set of functions

f1 ..., f,,. This is not, however, always so. For example, if F is the Newton operator
corresponding to a non-Linear operator C, L e.: F(x) — x - (C’(x)~~C(x), usually only the
operator C is given and the operator F is not known expLicitely. In this particuLar case,
when two processors are available, a more natural decomposition, as proposed by Kung

• in (3], is to have one process computing the value of C’ while the other process uses this
value for the evaluation of F. More precisely, if x and y are two global variables
containing the current values of the iterate arid of the reciprocal of the derivative of C,
respectively, the two processes correspond to the two following programs.
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• Process 1: whiLe (termination criterion not satisfied)

- 

do s i-x-yxG(z) .

Process 2: whiLe (termination criterion not satisfied)
- • do

Starting with the initial values x(0) and (G’(x(0))] 1 for x and y respectively, the

-J two processes execute their programs asynchronously and use for x and y whatever

values are currently available when needed. They impU.cltely defin, the sequence of

iterates x(j), for j 0, 1, ..., through formulas of the form:
x (j ) a H[x(j- 1) ,x(k1) ] ,  with Ic1 � f-I , (5.1)

where 
•

H(x ,y) — x -

This iteration, however, is not allowed in the setting of definition 1, because, In equation

(5.1), x (j ) is defined in terms of two previous iterates. And this motivates the need for a

~ 
j generalization of the class of asynchronous iterative methods.

- 5.1 - Asynchronous iteration with memory

- A generalization to definition 1 can be obtained by noting that, if, for 3 — 2, 3, ... , it

happens that Ic3 3-2 in equation (5.1), this equation defines a sequence of iterates which

corresponds exactly to the sequence generated by an iterative method with one memory.

This remark suggests the foLlowing generalization for the problem stated In equatio n

4 ( ( 1 .1).

Given an operator F from (W9~ into 01”, the problem is now to find a vector (in

• R” such that:
(a  Lim j F(x ,...,x”~) .  (5.2)

4 {x .q, x’~-I( }
The vector ( wilt stilt be catted a /Zzed po~rct for the operator F.

I
In very much the same way as we introduced the class of asynchronous Iterative

methods to solve equation (1.1), we now introduce the class of asynchronous iteretia’s

methods w&th memory to soLve ee~ation (5.2).

Definition 4:

Let F be an operator from (~‘~
]
~‘ 

into R’~ An asynchronous lNriatSon with

—1 2 —
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ntentory corresponding to the operator F and starting with s g~ven set of vectors
x(0), .. ., x (ns—I) is a sequence x(j) , j  — 0, 1, ..., of vectors of fi” defined for
j  — in, m~1, ... by:

ç x~(J—I) if ~ I J .
x1(j) a d

1 f/z 1,~ ., z”’) If i C .)1,
where z’, 1 ~ r � in, is the vector with components z( — 5/,~r(J)), I ~i-~ ,i. As in

definition 1, ,~~ — 

~~ 
— in, m+1, ... is a sequence of non-empty subsets of

(1, ... , a.) which correspond to the subsets of components evaluated at each ste p of

the iteration. But the sequence 4 is now to be replaced by:
4 — { (

~j
1(j) , ~~~~ 

~~
1(j) , ~~~~ , 5~in(f)) 

~
j a ~~~~ nt+1, ...

a sequence of elements in (1~1fl]in. In addition, white condition (c) of definItion 1

remains the same, conditions (a) and (c) now become:
for e a c h & — I ,...,n

(a) max( s ’(j) 1 ~ r ~ in J ~ f-I, for I — at, nt.1,
• (b) min{ s((f) 1 �r ~ m ) � j-1 tends to infinity as j  tends to infinity.

An asynchronous iteration with memory corresponding to F, starting with a set

X of ~n vectors arid defined with ? and 4 wUL be denoted by f~,Xj,4). I

For practical reasons (a. g., stability in the implementation on a computer), we
might want to have the additional condition that the vectors z~, ..., ~~ are alt distinct
But this restriction is not essential for our purpose here if we assume, for example, that

the operator F is defined by continuity when two or more vectors are identicaL This will

be the case with the class of operators we wilt consider.

Now, in order to obtain, for asynchronous iterations with memory, a convergence

result similar to the resuLt stated in theorem 1, we need to generalize the notion of

contractin g operato~ s to operators from [R’9” into R”.

In the remainder of the section, we will use the following notation. if (a , ...,

Is a set of vectors in R”, z a max[ z 1, ... , x”) denotes the vector in 11” with components

— max~ x( J 1 ~ r~ in). A naturaL genera lization to the notion of contracting

operators is given In the foUowing. 0

DefInition 5:

An operator F from cii”r into R” is an sn-coistr.cting operator on a subset 0

A 
- •  - -- --• 
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~f ~~ If there exists a non-negative .tx n matrix A with spectral radius less than unity
satisfying, for aU x~, .., xt, y~, ~~., ~~~ in 0,

- ~~~ ..., y”) 1 £ Amax(1x1-y I, ... ,

The matrix A wilL be called a contracting matrix for the operator F. I

When at — 1, the preceding definition corresponds exactly to definition 3. And
an—contracting operators have all the properties we have already mentioned for

I contract ing operators. In part icular , it Is clear from the definition that nt-contracting
operators are continuous and, In fact, uniformly continuous on 0”. The uniqueness of a
fixed point In 0 is also easily derived. In addition, if we assume that 0 is a closed
subset of 11” satisfying p(Qin) c 0, then we are guaranteed of the existence of a f ixed
point in 0: the fixed point is, for example, obtained as the Limit of the sequence x(j),
j  a 0, 1, ..., defined by:

x(j) a- F(x(j-1),... x(j-m)), I
which is independent of the set of starting vectors x(0) ..., x(ns-1) In 0.

We are now able to state the analogue of theorem 1 for in-contracting operators in
- the following.

Theorem 2:

If F is an in-contracting operator on a closed subset D of R” satisfying
F(D”) c 0, then any asynchronous iteration with memory corresponding to the
operator F and starting with an arbitrary set of at vectors in 0 converges to the

• unique fixed point of F in 0.
Proof:

With slight modifications, the proof of this theorem is identIcal to the proof of
theorem 1. I

5.2 — Examples of asynchronous iterations with memory

• In the beginning of this section, we considered the Asynchronous Newton’s method

~~~~~~ 
-
~ 

to find the simple root (of a non-linear operator C. This method led to the sequenc. of

- 
- , Iterates generated by the asynchronous iteration with memory (H,(x(0) ,x (0)},J,4) , where:

for j — 2 , 3, ...,
:~1(j) a f-I , ,~2(j) — k for j  — 2, 3, ... and i a ...,

-14 -
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In addition, as the operator H can easily be shown to be a 2-contracting operator
(assuming, for example, some Upchitz condition for the derivative of C In a small
neighbor of the root (), we see that the sequence defined by equation (5.1) converges to
(, provided that k1 tends to infinity with j  (which simply states the fact that the

• processes eventually complete each step of their computations).

Let F be an operator from (ffn] m into R’~, and let 0 be a positive scatar. Consider
the operator F0 from (Rlt)n”t into I?It obtained f~ m the operator F by the introduction
of the relaxation factor 0, and defined as

F(x0, x 1, ... , zin) a (l-&x0 + oF(x1, ..., x ’~)
We first note that both F and F0 have the same fixed points (if any). We also note that,
if F is an nt-contracting operator on some subset 0 of W~ with the contracting matrix A,
then, for aLL x°, x1, ~~~ ~~~~~~ y0, y 1, •~~

, y~~ in 0, the operator F0 satisfies:
..., ~fl2 )_ f 0(~,O, ..., ,~l7t) 1 

~ l1-ol(x°-y°1 + olF(x’, ..., 5at)..p(71, ...,
� lI-ollx0-y01 . oAmax( 1x 1-y11, ..., lx”'-y”9]
� [lI—oJI • oA]max[$x°—y0J, 1z1—y11, ...,

and, provided that 0 <o <2/ [l.p (A) J, F0 is an (in+1)-contracttng operator on 0 with the
contracting matrix A0 — 11—oil • oA. This reestablishes, in a more general setting, the

result mentioned in section 3.2 for asynchronous iterative methods with reLaxation.

• Many more examples of asynchronous iterations with memory can be given and, in
particular , all classical iterative method with memory can be expressed in this way. In
addition, alt usual super-Linear iterative methods with in memories can be shown (under
weak conditions) to correspond to some (ni.I )-contracting operator, therefore ensuring
the convergence of any asynchronous iterations corresponding to this operator.

6 — On th. complexity of asynchronous iterations

• Let F be an operator from R~ to itself with a fixed-point ( and sattsf yLng the
assumptions of theorem 1. We now Invest igate some measures of effic Iency for the
convergence of the asynchronous Iteration (V~,sO)J,4) toward the f xed-potnt (of F.

The constructive proof of the theorem already provides us with bounds for the
error vector x (~) - g. And, in fact, If F is a contracting operator with the contract ing
matrix A, we note that an estimate of the error committed with the asynchronous Iterat ion
(F,s(O)J,4) Li directly obtainable from th. asynchronous iteration (A,$sO)-f~J,4) . This

-15 -
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estimate Is used in this section to derive bounds for the efficiency of asynchronous

Iterat ions correspond ing to contractin g operat ors. However, since (A,Is(O)-1L,4) can

• only reflect Linear convergence , th is est imate is certa inty not adequate to deal, with eU
asynchronous Iterat ions , and, In section 8, using an examp le, we presen t an analysis for

an asynchronous Iteration with super-linear convergence.

For convenience, we only consider the convergence In norm of the error vector
x(j) — 3. By choosing, for example, the norm $~z~ — max ( ls~i I i — 1, .. ., nj, this
corresponds to the worst possible case for the convergence of the components.

To measure the Linear convergence of the sequence x(j), j  — 0, 1, ..., toward its Limit

3 we consider the folLowing complexity measures often referred to in the LIterature. The

rate of conver gence of the sequence is defined as:
— tim inf j .~~ ~

(-logHx(j )-(II)/J3 .
In addition, if is the cost associated with the evaluations of the first I Iterates,

... , x(f), we define the efficiency of the sequence by:
£ a tim inf 

~~~~~~~~ 

((-Log~x(j)-f~ /c1].
If .11 Logarithms are taKen to the base 10, 1/~ measures the asymptotic number of steps

required to div ide the error by a factor of 10, whereas lIE measures the corresponding

cost. We note that , if cj/f tends to some unite Limit ~ (which corresponds to the average

cost per step), then the efficiency Is simply given by E —

The costs a1 j  — 1, 2, ..., can be chosen according to any convenient measure. In

our case, we consider the cost to correspond either to the number of evaluations of the

11 operator F, or to the time to perform the evaluations . In the former case, If each

component is equaLly as hard to compute, the cost can be directly evaluated from the

sequence ~ by considering
C, — (1J11 • — ~ $J1P/ rt , (6.1)

where 1J11 is the cardinaLity of the set J1, i.. e., the number of com ponents evaluated at

the )-th step of the iteration. In the Latter cas e, the cost Is better suited to deal w ith

parallel algorithms , and can be evaluated through the cLassicaL toots of queueing theory.

When it is necessary to indicate which cost measure is used in the evaluatio n of the

9 efficIency, we use the notations E. If the cost Is measured In number of evaluations of F,

and E~ If the cost Is measured by the time needed to perform (sequent ially) one

evaluation of F. —
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6.1 — General bounds

We return to the proof of theorem 1, and we use the same notations. The proof

simply consists of constructing an increasing sequence of indices 1,,,~ 
p — 0, 1, ... ,

satisfy ing

l$x(j) - ~ 0~0P for j  
~

where the positive constant ~ can be taken to be ~ — ~
x(j)-t Il. From the construction of

this sequence we note that

f~,j _ f ~~+ r ~~.t ~ for p — O ,I,... ,

where r~ and t~, are integers chosen to satisfy: (1) starting with the index ~~~~ alt

evaluations of iterates do not make any more use of values of components corresponding
to iterates with indices smaLLer than f~; and (2) aLl components are evaluated at Least
once between the (f~+r~)_th and the (f~+r~+t~

)_ th iterates.

Now let

p, — sup{ p I r~.t0+...+r~~j+t~..j � j )  for j  a o~ I (6.2)

Then, if we know and for p 0, 1, ..., we can deduce a bound on llz(f)-tH since

IIr (i)-(II ~ cio~
f for f a 0, 1, ... ,

which shows that the sequence x (j ) , j — 0, 1, ..., converges at Least as fast as the sequence

o~J, j  — 0, 1, .. ., with a rate of convergence ~ such that

P. � - (Urn inf 
~~~~~~~~ ~p1/j)] logo .

And, if is the cost associated with the evaluations of the first j  iterates, we have the
following bound for the efficiency:

E ~ - (tim inf 
~~~~~~~~ 

(p1/c1)] Logo .

-

, -
~ In addition, as was noticed earlier, if A is a contracting matrix for the operator F, o can

be chosen arbitrarily close to p(A). This shows that in the bounds we have just obtained
we can simply replace o by p(A), and this yields the following.

Theorem 3:

Let F satisfy the condition of theorem 1, and Let A be a contracting matrix for
the operator F. Then the asynchronous iteration (F,s(’0),J,4) converges to the fixed
point of F with a rate of convergence

• 
‘ P. - Elm inf 

~~~~~ 
(p1/j ) )logp(A) ,

and an efficiency
E ~ 

- [Lim inf j .~~ 
(pjfoj )]logp (A) ,

whore the sequence P1 is defined from and 4 by equation (6.2).

-- •— 
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4 An .xanip$.

As an &ttustratlon, we consider the parallel Implemen tation of Jacob i’s method with

k processes. For simplIcity, we assume that n is a multiple of k, and we set q — n/k.

To avoid an overhead in the selection of the components to be updated .t each
step of the iteration, each process is assigned to the evaluation of a fixed subset of the

components. In particular , when all components are equaUy as hard to compute, and
when alt processors are equally as fast , it is natural to decompose the set of components

I into subsets of equal sizes, and, for example, to assign the first process to the evaluation
of the first q components, the second process to the evaluation of the next q components,

and so forth. Corresponding to this decomposition, a parallel implementation of Jacobi’s

• method with k processes can be represented by the asynchronous iteration (T,sO)?,4),

where ~ and 4 are defined by:
J . a ( i ~~I • (j — 1 mod k) q~~&~~q. ( j- 1 mOd k) q } f or  j . I , 2, ... ,
.~(j) — ~(‘f-1)/kJq for j .  1,2,... and s —

The two asynchronous Iterat ions we introduced in section 2.2 to represent Jacobi’s
m thod corresp ond to the particu Lar cases k — 1 and k — n.

It I. easy to check that r~ and are given by I and 4, respectiveLy, for p — 0, 1,

This shows that p - (j / kJ and therefore
� -(tog p(A))/k .

Nàw, if a measures the number of evaLuations of F required to compute the first I
I Iterates, using equation (6.1), we have a1 — f/k. This gives for the effIciency;

E5 k) z -Aogp(A)) . (6.3)

For all values of 4, we obtain the same bound for the efficiency. In particular, when F Is

th. linear operator defined by F(s) - Ax • b, where A Is a non-negative nxft matrix with

spectral radius Less than unity, then A can be chosen as a contractin g matrix for F and

the bound (6.3) Is known to be shar p.

Since the asynchronous iteration we are considering corresponds to a paraLlel
ImplementatIon of Jacobi ’s method, instead of measur ing the coat by the number of

evaluations of F, It is more natural to use the average time to perform the evaluations as
a measure of the cost . L.et the time unit be the average time to perform (sequentially)

one evaluation of F. Then, If ph g J~ 
(p.11k, we have c~4~ a ~ C(p.1)11 and

°pk — pfAk/k]. The expression A4fIc corresponds to the time for the 4 processes to

- • ~~~~~~~•~~~~~~~~ _ •~~~~~~~
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execute in parallel their computations and to synchronize their executions. The factor A4
is the penaIt~ factor mentioned in (3]; it measures the overhead due to the fluctuations in

the computing times of the k processes, and can be evaluated if we know, for example,

the distribution function for the time to evaluate F. In particular, we have A 1 — I and, for

4 � 2, A4 � I with the equality only when it always take the same constan t time to

evaLuate F (i. e., there are no fluctuations in the computing time). This cost measure

yieLds the following bound for the efficiency:
E

~
(k) ~ -[k/ A 4)i ogp(A) .

j Again, these bounds are sharp for the linear operator we mentioned above, and the ratio
• Ee~

k)/E
~
I) — k/A 4 measures the speed-up achieved by using a parallel Implementation

with k processes. We would expect the implementation with 4 processes to be 4 times as

efficient as the sequential implementation (with 4 — 1), but this is not so because of the

overhead introduced by synchronizing the 4 processes - and measured by the penalty

factor A4.

6.2 — Additional assum ptions

In the preceding example, we have been able to carry out the analysis for Jacobi’s

method (and even obtain sharp bounds on the efficiency) because the representation in

terms of asynchronous iterations is known explicitly and follows a very regular pattern.

This is not, however, generaLLy so. For example, In a parallel implementation with

• several processes using no synchronization (as presented in section 2.1), the sequences

- 4 and ~ (and, therefore, the sequences r~ and t~, p — 0, 1, ...) are not known directly but

are only defined implicitly by the processes in the course of their execut ions.

:1 Below, we present alternate bounds for P. and E under conditions often satisfied In

usual implementations of asynchronous iterations. We assume that we know bounds on rp
-. - . 

• and and we restrict the definition of the class of asynchronous iterative methods by

• . 
replacing conditions (b) and (c) of definition 1 with the following:

(b’) There exists a positive integer r such that , for i — 1, 2, ... and S — 1, ... , is,

• 

• s~(f) ~ j—r,

• (c’) there exists a non-negative Integer t such that, for f — 1, 2, .. .,

J1u ...uJj ,~~~(1
,..., ’t).

Condition (b’) corresponds exactly to the restriction stated by Chazen and I~ ranker in the

definition of the chaotic relaxation scheme (1). We have criticized the condi tion for the

—1 9 — 

- -  •-~~~~~~ •-- - - -  -~- • - -,~~ •- - - ~~•- - • -~ ~ •- •~ ~~~~~~~~~~~~~~ 
- - - •



- • :~~~~ ‘~~~‘ ~ -~~ n- 
~~~~~

- - - - -~~—--- -- ---~~—— - - - - • - - --

generaLity of the definition, and we have shown that this condition was not necessary to

ensure the convergence of asynchronous Iterations. In practical applications, however,

this condition Is often satisfied, in particular, when the computatAons of .tt components

have the same complexity (wh ich Is the case w ith a Linear operato r). Condition (c’) is

also satisfied for most of the usual implementations of asynchronous iterat ions, since it Is

natural that (1) a process evaluates a component by using the most recently updated

values of all components; and (2) two processes never evaLuate the same component at

the same time; in this case it follows directly that, by taking r — t+I, conditions (b’) and

(c’) are equivalent

Under the additional conditions (b’) and (c’), we cte~rty have ~ r and t~, � t, for

• p — 0, 1, ..., and, therefore, 
~‘1 ~ 1j/ (r.s) J. From the bounds stated in theorem 3, we

Immediately obta in the following.

Corollary:
Let F satisfy the condition of theorem 1, and l.t A be a contracting matrix for

F. 0 the asynchronous iteration (F,x(0)J,4) satisfies the additionaL conditions (b’)

and (c’), then it converges to the fixed point of F with a rite of convergence

P. - (1/f r .e) J togp(A),
and an efficienc y

£ � - (tim j
~~ 

j/ (r.t) c1] togpM),
• where the sequence p1 Is defined from ~ and 4 by equation (6.2).

7 - Eicp.rlm nt& r.su lts

Several asynchronous iterations have been experimented with on C.mmp, the

Carnegie-Mellon mult iprocessor (8], and the actual measurements are presented In the

next section. The different asynchronous iterative methods are described below.

7.1 - Asynchronous Iterat ions experimented with

ALL asynchronous Iterations we have experimented with consist of the paralleL

• execution of 4 processes. As we did with the parallel Implementation of Jacobi’s method,

we assign to each of the processes the evaluation of a fixed subset of the components.

Each process computes cyclically new values for the components In Its subset, and the

methods onLy differ by the choices of the values used in the evaluations.

-20 -
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• Asynchronous Jacobi’s method (AJ): For the evaluations of alt components, a process
uses only values of the components known at the beginning of a cycle, and the

• process releases aLl new values at the end of each cycle.
Asynchronous Gauss-Seidet’s method lAGS): Same as the AJ method except that the

process uses new vaLues of the components in its subset as soon as they are
known for further evaluations in the same cycle. Again, It releases the new
values (for the other processes) at the end of its cycle.

Purely Asynchronous method (PA): A process computes the new values of each
component by using the most recent values of alt components and releases each
new value immediateLy after its evaluation.

The PA method is certainly the easiest method to implement, and, as far as space is
concerned, is clearly the most efficient one, whereas the AJ method is the worst one,
since it requires from each process not only a complete duplication of all components (as
of the beginning of its cyc le) but still another copy of the components in its own subset.

• 
- This can hardly be justified but experimental results give useful comparisons between

the AJ method and the actual Jacobi’s method (also between the AGS and Gauss-Seidet’s
methods).

In addition, both the AJ and AGS methods aLso require the need for a critical
section in order to read all components at the beginning of a cycle and to update the
values at the end of a cycle, whereas no critical section is needed with the PA method.
However, C.mmp has the drawback that no indivisible instructions exist to read or write
floating point numbers (implemented on two consecutive words of memory), therefore, if
we are to implement the PA method on C.mmp, only the first 8 bits of the mantissa can be
considered significant, and the admissible error in the termination criterion has to be

chosen accordingly.

1.2 - Results

The three methods just described, as well as Jacobi’s method, have been
Implemented on C.mmp to solve the Diri.chlet problem for Laplace’s equation on a

rectangular doma in of lIi. Using the method of finite differences, an approximate - -

solution to this problem can be found by soLving a linear system of equat ions. In the •

•xp.riments reported here, a regular grid his been chosen with 21x24 Interior points,
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resulting in a linear system of size i& — 504. This system can be represented in the form

x — Fix) — Ax • b, where the vector b is obtained from the boundary conditions, and the

matr ix A Is a (ver y sparse) non-negative matrix with spectral radius p(A)~ 0.991. Since

p(IAI) — p(A) < 1, this shows that A Is a contracting matrix for the operator F, and,

therefore, that the result of theorem 1 can be applied to F to ensure the convergence of

each iterati ve method.

At the time the measurements have been taken, the configuration of C.mmp included

six processors , and alt iterative methods have been run with a number of processes J
k — l, 2, 3 4, and 6. Each of the resuLts reported here is the average of three -J

— 
measurements, but, since C.mmp was used in stand-atone during the experiments, very

LittLe difference was noted from one run to the next. - •

In table 1, we report for the four methods the average number of vector
evaluations required to reduce (asymptoticaLly) the error vector by a factor of 10: this

- 
- corresponds to the cost measure L/E1. And, in table 2, we report the average time

(expressed in seconds) required to achieve this reduction: this corresponds to the cost

mesure 1/Es.

The bounds obtained from the results of the previous sections are mentioned in

parentheses along with the measurements. The parameters in these bounds have been

evaluated either directly (e. g., p(A)~ 0.991), or through measurements by tracing the

executions of the processes. In particular, for the AJ, AGS and PA methods, the bounds r

4 and t , defined in section 6.2, have been determined by observing the sequencing of the

tasks performed by the different processes . Similarly, the penalty factor In Jacobi’s

method and the overhead due to the crit icaL section In the AJ and AGS methods have been

-: ‘ obta ined by direct measurements: they are presented in tables 3 and 4.

Jacobi AJ AGS PA

Ii — 1 254 (254) 254 (254) 127 (254) 127 (254)

k — 2 254 (254) 266 (888) 142 (888) 127 (762)

K • 3 254 (254) 267 (846) 149 (846) 127 (762)

K — 4 254 (254) 273 (825) 166 (825) 129 (762)

K — 6 254 (254) 285 (804) 196 (804) 128 (762)

Table 1 - Number of evaluations required to divide the error by a factor of 10
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• Jacobi AJ AGS PA
— 

K — 1 337 (337) 337 (337) 168 (337) 168 (337)
k — 2  241 (241) 211 (705) 113 (705) 84 (506)
K — 3 178 (178) 149 (471) 83 (471) 56 (337)
K — 4 153 (153) 123 (372) 75 (372) 43 (253)
I i— 6 131 (131) 102 (289) 70 (289) 28 (169)

Table 2 - Time required to divide the error by a factor of 10

k— i  I~— 2 k— 3 k— 4 k— 6

Ak 1 143 1.59 1.82 2.34
7. 0 29.9 37.1 45.1 57.3

Table 3 - Penalty factor with Jacobi’s method
and percentage of the wasted time

k— i  k— 2  k— 3  I~— 4  ~— 6

~k 1 1.20 1.26 1.35 1.62
7. 0 16.6 20.8 26.0 382

• 

Table 4 - CriticaL section overhead cost with the AJ and AGS methods
and percentage of the wasted time

These results must only be considered to ilLustrate the behavior of asynchronous
iterations, since, in particular, the two cost measures reported in tables 1 and 2 strongLy
depend on both the probLem (L a., the matrix A) and the multiprocessor system. Yet, they
show a clear advantage of asynchronous methods over synchronized methods.

We note, for example, from table 3 that, with Jacobi’s method, when Is — 6
processes are used, the penalty factor is as big as A6 — 2.34. This means that about 57

• . 
percent of the time is spent by a process waiting for the other processes to finish their

• computations. This limits the possible speed-up to 2.6 rather than 6.

We also note that the use of critical sections, too, should be avoided, since, with

4 the A.? or AGS methods, when 6 processes are used, about 38 percent of the time is spent
waiting for entering the critical section, again limiting the possible speed-up to 3.7

rather than 6.
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The measurements for the PA method, on the other hand, LndLcate that we achieve
an almost full speed-up with this method (at least with a small number of processes). An
obvious reason for this speed-up Is the total absence of any form of synchronization;
another reason, specific to the problem we have experimented with and indicated by the

results of table 1, Is the sparsity of the matrix A.

The bounds derived in section 6 have been obtained in a very generaL case. Yet
tabLes 1 and 2 show that they are always within a factor between 3 and 6 of the actuaL - •
measurements (except for Jacobi’s method where they are sharp). In addition, we
certainty could obtain much sharper bounds by carrying out the analysis for the specific

- problem we have experimented with (for example, by taking into account the sparsity of
the matrix). In particular, a specific analysis for the PA method can easily explain the
fact that lIE

1 
is almost not influenced by the number of processes (see table 1).

8 — Asynchronous iterations with super-linear convergence

As we already noticed, the bounds established in section 6 are certainly not

adequate to measure the complexity of iterations with super-Linear convergence. In this
section, we use as an example the iterative method we have mentioned at the beginning
of section 5 to show how an analysis of the complexity can be done for this case.

To study the convergence of a sequence x(j), j — 0, 1, ... , toward its Limit ~~ , we now
use the following usual measures of complexity. The order of convergence is defined as

p — tim tnt J~4oo
and, as before, if c1 is the cost associated with the evaluations of the first j  iterates, 

- •

..., x(j), we define the efficiency of the sequence by:
E — urn inf 

~~~~~~~~ 
[(tog_Logilx(J)_flI)/c~],

• Again, we note that, if the average cost per step c1/j tends to some finite Limit v when j
tends to infinity, the efficiency is simply given by E — (togp)/c. In the remainder of the

4 section, we assume that the Limit ~ exists.

In order to find the simple root g of an operat or C from ii~ into Itself , we use the
A y,whronous Newton’s method, AN, as impLemented by the two processes described at the
beginning of section 5. Let rj , & — 1, 2, ... , be the number of iterates evaluated by the
first process, P1, during the i-th evaLuation of the derivative C’ by the second proces s,
P2. Let j 0— O a n d  j 1 .r 1 + ... .r 4, for i~~1,2,..,,then x(j~),i — 0 ,1,... ,is the iterate used
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by P2 for the (i. 1)-st evaluation of the derivative. Starting with the two initial values

x(O) and G’(x(O)), the AN method generates with the two processes P1 and P2 the

sequence of Iterates x(j), j  — 1, 2, ... , defined by

• x(j .1) — x(j) — (G’(x(js_j))i~’
G(x(j)), for i • 1, 2, ... and ‘j~ 

c j  � . (8.1)

The following theorem gives the measures of complexity for this sequence If we

know some bounds on the sequence rL, i • 1, 2,

Theorem 4:
Let the initial approximation x(0) be close enough to the root ~~, that I.

x ( 0) CD~ — ( x l Q a ’- t H < c} ,
and let the derivative C’ satisfy some Ltpchutz condition on

llG’(x)-C’(y)fl � M~j x-y Ø ,  V x y C D~.

If £ satisf ies the condition

• M1JC’(f .r- 1 fle 2/5 ,

• 
and if there exist some positive integers p and q such that

p�r~- �q , for s —  1,2,...,
then the order of convergence, ,o, and the efficiency, E, of the sequence defined by

equation (8.1) satisfy:
(8.2)

and
- 

• 
E � (togA~)/(qc), (8.3)

where is the Largest root of the equation z3 - ~2 - (p-l) z - I — 0 (for which we 
-
•

can check easily that 0.4 • v’~~< A~ < 0.5 • ~~~ p — 1, 2, ...).

Proof :
The proof is easy but technical, and below we only give an outline for this proof.

Let ~ — MUG’(fT’fl, and let c — 3ac/(2(1-~c)]. From the choic. of s, we first note

that, starting with x(0) C D~, the sequence ~
x(j) -a, j  — 0, 1, .. ., is strictly decreasing and

-
- 1~_ satisfies:

llx(Jj•1)1iI clI~(j4._2)—gUlIx(f~)rU , for • 2, 3,

and
flx(j .1)fff ~ oHx(Jj_i)-!Ilfls(j) !I , for i — 2, 3, ... and 4 c I c ~~ 

— 4 • r~. - 
-
~

By substitution, it follows that, for S — 2, 3, ... ,

lIa (Jj ,j )—tIl ~:‘uz(j 5_1 ) -rll~~
1ns(15_2~ruux(j 5~,u,

and, if we set u~, — -togc~x(jj ) -f ~
j , we obtain:
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U5,j ~ • (r4—1 ~~~~ • ~¼~2’ for S — 2, 3,

Therefore, by using the Lower bound on r5, we deduce that
u~+j �u5 + (p—Lki~4_j ~~‘~—2 ’ for s — 2 ,3,... .

This shows that u1 tends to Infinity at Least as fast as A~,
1. Therefore , the order of

convergence , p’, of the subsequence x(j5), £ • 0, 1, ..., must verify p’ 
~ 

A~ The bound.
(8.2) and (8.3) are derived directly from this last inequality. I

In particular, if the cost measures the number of evaluations of the operator C,
we simply have a’ — j ,  and, therefore, E~ � (1ogA~)/q. On the other hand, if the cost
corresponds to the execution time, the efficiency will depend on the Implementation
itself. For example, an implementation corresponding strictly to the generation of the
sequence described by equation (8.1) requires the use of a critical section for reading
and writing, in a block, the values of the iterates and of the derivative. The use of a

criticaL section introduces an overhead, but, as is done with the PA method, the overhead
can be avoided if a process uses whatever values are currently available when needed
In this case the bounds of theorem 4 still holds, and ~ can be given the value c — 1.

The parame ters p and q, too, depend on the particular implementation of the AN
method, and, especially, on the relative speeds of the processors executing the processes
P1 and P2. In practice, if the processors are equally as fast, we expect, with small
variations, r4 to be cLose to n, and the values p — q — it can predict good estimates for the
eff ic iency of the AN method implemented with two processes.

The AN method is easily generalizable to more than two processes. If k processes
are available, Is1 might be assigned to the evaluation of the sequence of iterates, whiLe

I 
k2 — Is - Is1 are assigned to the evaluation of the derivative. The bounds of theorem 4
stiLt holds for this case as welt, only with different values for the sequence r5, ~ — 1, 2, ...
(or for the bounds p and q), determined by the parallel implementations of the two
evaluations. Further results in this direction wi lt be reported elsewhere.

4 -

9 - Extensions of th. results

- . We mention below some direct extensions of the results presented in this paper

and some points subject to further deveLopments.

A stra lghfo rwa rd generalization of the results can be obtained If , Instead of WI, we
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consider the product P of a Banach spaces B, with norms I.I~, i — 1, ... a. In this case, if x

I Is an element of P, x is determined by its components x4 C B,, S — 1, — a. And al
represents the non-negative vector of W’ with components ls~I~

, S — I,... n.

Considering only the class of linear operators, F(s) — Ax • b we have noted that
- • 

the notion of contracting operators coincides with the condition that p($Aj )  c I. In (1), —

Chazan and Miranker have shown that this condition Is not only sufficient but aLso
necessary for the convergence of all chaotic iterations. This impli.oa1 in part icular, that

alt asynchronous iterations corresponding to a linear operator F are convergent if and
• on ly if F is a contracting operator. When we also consider non-Linear operators,

however, the proof given by Chazan and Miranker does not apply any more, and it would

- - be of interest to obtain conditions on the class of operators for which aLL asynchronous
iterations are guaranteed to converge . Similar conditions for the convergence of a more
restricted cLass of iterations would also be of interest, in particular, for the subcLass of
asynchronous iterative methods corresponding to the additional assumptions introduced
in section 6.1.

The bounds we have obtained to estimate the rate of convergence of asynchronous
iterations have been derived by considering the worst possible case, and, compared to
actual measurements, these bounds happen to be very conservative. It would certainly
be very useful to obtain bounds (or estimates ) corresponding to the average behavior of
asynchronous iterations, for example, given the probabiLity distributions of the two

• sequences ? and 4 or, more generalLy, given the distribution functions for the time it
takes the different processes to evaluate the components.

:4 We have already mentioned the possibity to introduce a reLaxation factor in
asynchronous iterations , and, for contr act ing operators , we have derived a possible range
that guarantees the convergence of all asynchronous iterations. Nothing is known,
however, about the optimal choice of the relaxation factor, for example, given directly
the asynchronous iteration through~ and 4, or, again, given the distribution functions for
the evaluation times. 

• 
-

-

~ ~
- 10 - Concluding remark.

In the implementation of most parallel algorithms, synchronisation seems to be
required to assure the communication between the processes, and to guarantee their
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correct executions. However, the main drawback with synchronization is that it degrades

• cons iderably the performance of the algorithms because It is very time consum ing. The

class of asynchronous iterative methods avoids this drawback. It Includes iterations

corresponding to a parallel Implementation in which the coo perat ing proces~es have a

I minimum of Intercommunication and do not make any use of synchronization. The Pw*ty
• 

• Asynchronous method described in sectIon 7.1 Is a typical example of an asynchronous

iterative method. -

in [1], Chazan and Miranker Introd uced chaotic relaxation schemes requir ing a

condition which can only be satisfied by using repeated checking and some form of

synchronizat ion at each step of the iteration. Asynchronous iterative methods do not

require thL~ condition and are more general then chaotic relaxatio n schemes.
• Asynchronous iterations further genera lize to asynchronous iterations with memory which

allow diffe rent values of the same variable to be used w ithin the same com putat ion.

Using the notions of contracting Operators and of nt-coat racting operators,

theorem 1 and theo rem 2 state sufficient cond itions to guarantee the convergence of any
asynchronous iterations and asynchronous iterations w ith memory. These conditions are

satisfied for a large class of operators.

In the second part of the paper, asynchronous iterations are evaluated from a

computational point of visw, then the results of a series of actual measurements

(obtained by running asynchronous iterations on a multi processor ) are presented . These
results fully just ify the use of asynchronous iterative methods.

General bounds on the efficiency of asynchronous iterations are first derived

j directly from the proof of the convergence theorem. Although these bounds are sharp for

a paral lel Implementat ion of Jacobi’ s method , they are of little appL icabIlity since they

require to know a priori the exact specification of each step of the iteration. Alternate

bounds are then derived under additional conditi ons which are usually sat(sf led In

practical applications . These bounds are cons istent with actua l measurements~ for the

experiments we have run, they are always within a factor of 6 of the measurements. In

addition, It Is our feeling that these bounds can be Largely Improved If we take into

account specif ic character ist ics of the problem being solved, therefore leading to a better 
-;

understanding of asynchronous Iterations. In secti on 8, for example, we have made a first

step in this direction, and we have presented an analysis for the Asynchronous Newton’s

~ 
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_
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A series of experiments has been conducted on C.mmp, a multiprocessor system
(with 6 processors at the time the experiments have been run), and several asynchronous
iterative methods have been implemented to solve a large Linear system of equatIons.
They range from Jacobi’s method, requiring a full synchronization of all the processes at

each step of the Iteration, to the PA method, which requires no synchronization at aU. in
between, the AJ and PIGS methods are derived from the usual Jacobi’s and Gauss -S.idet’s
methods, and they require the use of a critical section .

The experimental results show a considerable advantage for the iterative method
with no synchronization at all. For a number of processes up to the number of
processors available on C.mmp, the PA method exhibits full parallelism and has an

optimal speed-up compared to Gauss -Seidet’s method, the best sequential method

experimented w ith. The AJ and AGS methods have a very similar behavior, and when 6

• processes are used the overhead caused by the critical section impLies that 38 percent of
- the time a process is waiting for entering the critical section. As is intuitively expected,
Jacobi’ s method has the worst behavior of all the methods cons idered, and, with 6

processes, the overhead, due to the synchronization of alt the processes at each step of
the iteration, is about 57 percent Ci. e., more than half the time a process is waiti ng for

• the other processes to finish their computations).

On the basis of these experimental results, and for the problem we have

:
1 considered, there does not seem to be any alternatives: the PA method is obviously the

- 
most efficient one. In addition, another advantage of the PA method is that it is the
easiest one to implement, and, spacew ise, it is also the most efficient one.

• Finally, another possibility, which has only been outlined in the pape r, s the
introduction of a relaxation factor. Based only on a few experimental results (not
reported here), it is our belief that we can expect an Improvement of the Pur.Ly

AsynchronouS Over-R.IAxotion method over the PA method similar to the improvement of
the SOR method over the Gauss-Seidet’s method, if we choose the relaxation factor in an
optimaL way. Th. optimal choice of the relaxation fac tor depends not only on the system
being solved, but also on the probab ility distributions of the various execution times by

• the dif ferent processes .
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